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A B S T R A C T

In this paper, we investigate high-strain-rate deformations in crystalline materials using a
novel implementation of Objective Molecular Dynamics (OMD). The OMD method is exact and
has a rigorous foundation based on the fundamental invariance of the underlying potential
energy surface: all atoms out to infinity satisfy the equations of molecular dynamics to high
accuracy. Using this OMD method, we compute how dislocations filling all of the space in a
crystalline material undergo time-dependent, three-dimensional motions during deformation.
We apply this method to investigate the dynamics of screw dislocations in FCC nickel. Our key
finding is that the macroscopic motion (i.e., loading conditions) and initial conditions greatly
affect the atomic scale deformation mechanisms—such as the formation, motion, multiplication,
annihilation, and abrupt changes of the slip plane and Burgers vector of dislocations. Small
changes in the macroscopic loading conditions generate a rich variety of atomic deformation
pathways. In certain macroscopic motions, we observe the growth of a stacking fault into a
mechanical twin, which subsequently thickens by a process of step motion. In other macroscopic
motions, we observe the initiation and subsequent development of cross-slip by the Friedel–
Escaig (FE) or Fleischer mechanisms (FL). Under mixed loading conditions, a novel mechanism,
with a combination of both FE and FL mechanisms was also observed. Our findings on the
effect of external strain rate and temperature on the critical stress for homogeneous cross-slip
quantitatively agree with a version of transition state theory with a stress-dependent activation
barrier. Beyond dislocation motion, we demonstrate the modeling of sliding surfaces using the
OMD framework. These examples highlight potential applications of the OMD framework to the
mechanisms underlying plastic deformation and friction in material systems.

. Introduction

Molecular Dynamics (MD) is a powerful simulation technique that elucidates the macroscopic response of materials by exploring
he dynamics of atoms at a microscopic scale (Alder and Wainwright, 1959). Despite its fundamental advantages, the MD approach
uffers from two well-known limitations: its accessibility to only short time and length scales. For ergodic systems, in which the
ime evolution of a single atomic system is believed to be in statistical agreement with the evolution of a very large number of
dentical systems (ensemble) in phase space, these limitations are addressable to a certain extent. For example, periodic boundary
onditions help to mitigate the length-scale limitations for bulk phenomena. With periodic boundary conditions, one surrounds
he fundamental simulation domain by periodic images of itself which helps to remove finite-size/surface effects of the simulation
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at modest additional computational cost (Allen and Tildesley, 2017). Similarly, Equilibrium Periodic MD (PMD) (that is linked to
equilibrium statistical mechanics) is computed for different ensembles corresponding to various macroscopic boundary conditions
imposed on the system. For example, a microcanonical ensemble corresponds to a system that is isolated with fixed total energy, a
canonical ensemble corresponds to a system at a constant temperature, and a (generalized) stress ensemble corresponds to a system
subjected to constant external stress. The simplest equilibrium molecular dynamics algorithm uses Hamilton’s equations of motion
alone, which would be appropriate for a microcanonical or adiabatic system. The other macroscopic constraints are achieved by
imposing a thermostat and barostat on the system for a constant temperature/constant stress ensemble (Tadmor and Miller, 2011).

However, Non-Equilibrium Molecular Dynamics (NEMD) does not have a well-developed theoretical connection with a statistical
echanics framework, because of the absence of general non-equilibrium statistical mechanics. Thus, the use of equilibrium

oncepts of thermostat and barostat which are designed to sample the equilibrium probability density for tuning a system under
ar-from-equilibrium conditions is questionable since it can pollute the natural dynamics of atoms.

The method of Objective MD (OMD) generalizes PMD to non-equilibrium situations (Dayal and James, 2010; Aghaei and Dayal,
011; Aghaei et al., 2013). It provides a framework to simulate a material under a family of macroscopic Lagrangian motions given
y

𝐲(𝐱, 𝑡) = (𝐈 + 𝑡𝐀)𝐱, (1)

here 𝐀 is an arbitrary assigned 3 × 3 constant matrix, equal to the material time derivative of the deformation gradient tensor. This
parameter family of motions (Eulerian form: 𝐯(𝐲, 𝑡) = 𝐀(𝐈 + 𝑡𝐀)−1𝐲) is quite simple but includes compressible and incompressible

ases, time-dependent vorticity, and strong singularities at 𝑡⋆ in cases that det(𝐈 + 𝑡𝐀) → 0 as 𝑡 → 𝑡⋆. Since all accepted models of
aterials in continuum mechanics (elastic/plastic, nonlinear elastic, Navier–Stokes, non-Newtonian, etc.) have the property that a
otion with deformation gradient depending only on time has stress that depends only on time, then

𝜌0
𝜕2𝐲
𝜕𝑡2

= div𝝈 = 0, 𝝈 = �̃�(𝑡) (2)

is satisfied by all materials in this case.
Thus, the motions we study have zero macroscopic inertia. The invariance of the atomic forces of MD give rise to ‘‘universal

motions’’ which satisfy momentum conservation of continuum mechanics for all accepted constitutive models (Dayal and James,
2012). This synergy encourages the use of OMD to build higher-scale models. One such effort is to develop a non-classical constitutive
model for universal flows of dilute gases which improves Navier–Stokes prediction under strong gradients (Pahlani et al., 2022b,
0000).

Essentially, what we realized in research leading to this paper is that, even in highly inhomogeneous cases such as complex
dislocation motion or frictional sliding, where we are far from having an accepted macroscopic constitutive equation, the method
of OMD remains a useful tool to learn about the dynamic behavior of materials.

In OMD, one considers a set of atoms (simulated atoms) denoted by 𝐲𝑘(𝑡), 𝑘 = {1,… ,𝑀}, and the MD equations are satisfied for
those atoms. The motions of all the other infinite (non-simulated) atoms are obtained by exploiting the basic invariance of quantum
mechanics. More precisely, the positions of the non-simulated atoms are given by elements of a time-dependent discrete group of
isometries acting on the simulated atoms. The main result is that every atom satisfies the MD equations exactly for its forces, even
though these equations are not being solved for non-simulated atoms explicitly. The advantage is that the dynamics of atoms is
exact and hence is applicable in the far-from-equilibrium regime. There exist many choices of isometry groups that provide an exact
NEMD approach for various systems ranging from nano-structures to bulk systems (Aghaei et al., 2013; Pahlani et al., 2022b). In
this paper, the group is specialized to be the time-dependent translation group (TDTG), which gives rise to macroscopic motions of
the form (1). The computational design of OMD corresponding to TDTG is provided in earlier work (Pahlani et al., 2022a).

Generally, the simulated atoms can lie anywhere in space. They can also be chosen to lie in a fundamental domain of the group,
in which case the connection with the periodic boundary conditions becomes more apparent. As in periodic boundary conditions,
if a simulated atom leaves the fundamental domain, then a corresponding nonsimulated atom enters that domain, but, unlike PMD
which describes the system under adiabatic conditions, this nonsimulated atom enters with a different velocity. The relationship
between the trajectory of non-simulated and simulated atoms is provided in Section 2. Also, the fundamental domain deforms
in time and its motion is given by (1). All atoms, both inside and outside the deforming fundamental domain, satisfy exactly
the equations of molecular dynamics for their forces. The macroscopic motion associated with TDTG of OMD corresponds to the
application of a macroscopic boundary condition of constant engineering strain rate to the material. In the literature, there are
computational tools corresponding to the application of true strain rate (Thompson et al., 2022) as well. To our knowledge, unlike
OMD, these simulations cannot be extended to larger domains as exact solutions, but better represent small-volume behavior under
these boundary conditions.

Another widely used method to conduct NEMD simulations imposes explicit external forces in the equation of motion in
conjunction with periodic boundaries to achieve any desired homogeneous motion. The method was pioneered by Hoover and
Evans and is considered suitable for fluid flows (Hoover et al., 1980; Evans and Morriss, 1984). Because of the fictitious forces, we
doubt it would give results in any way similar to those of OMD and sample the non-equilibrium distribution corresponding to it, even
in cases where the homogeneous motion matches the average motion of OMD. In other words, we find a significant dependence
of behavior on the specifics of atomic forces. In the special case of simple shearing motion, OMD is formally the same as early
2

nonequilibrium simulations of shear flow by Lees and Edwards (1972). However, it is our opinion that the use of moving boxes
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Fig. 1. A list of isochoric motions and schematic illustrations of the corresponding deformations of an orthonormal cubic cell. We simulate these motions as
affine deformation of the unit cell in the OMD framework. The deformations have been exaggerated for illustration purposes.

as in the work by Lees and Edwards method is not an efficient implementation and apparently does not extend to the many other
possible choices of 𝐀 besides simple shearing. By contrast, we can simulate a range of shear deformations using OMD as illustrated
in Fig. 1.

In summary, the OMD method used here is an exact method of molecular dynamics. The system is not in statistical equilibrium
and the phase space distribution function is time-dependent. Also, the Hamiltonian of any subset of atoms is far from being constant.
The simulations can be highly dissipative, especially when dislocations are moving, and the temperature changes in time.

In this study we focus on the usage of OMD for problems in materials science, particularly for the investigation of the dynamics
of dislocations. We also illustrate its potential for problems involving friction, also using the translation group. In our recent
work (Pahlani et al., 2022a) we modeled families of incompressible, compressible, and unsteady flows in Lennard-Jones systems.
The macroscopic flows predicted by OMD were shown to be the exact solutions of the Navier–Stokes equations. This exact modeling
framework (i.e., same numerics, macroscopic deformations (same 𝐀)) is applied in the current work to a crystalline material with
different inter-atomic potential and initial conditions, to investigate the evolution of dislocations and friction at the atomic scale.
In fact, exactly the same computer program can be used for fluids and dislocations, although the efficiency of the method depends
on the details of the implementation. Thus, OMD is a universal NEMD approach for investigating the non-equilibrium dynamics
behavior of the system.

Dislocations are important defects of crystals that are a primary microscopic mechanism of plasticity. Thus the study of their
dynamic behavior is important for a complete understanding of plastic deformation in crystalline materials. Plasticity is characterized
by phenomena occurring across several orders of magnitude in length and time scales (Tadmor et al., 1996; Tadmor and Miller,
2011; Conti et al., 2007) which makes it complicated to segregate the role played by different phenomena in guiding the particular
macroscopic behavior.

In this work, we focus on the atomistic length scale and investigate the phenomenon of cross-slip, a fundamental aspect of the
motion of screw dislocations (Hull and Bacon, 2001). Cross-slip in close-packed lattices will influence the behavior and arrangement
of dislocations on a mesoscopic scale which can affect macroscopic behavior. The microscopic investigation conducted in this study
can assist the modeling of cross-slip at the mesoscopic scale within the framework of dislocation dynamics simulation under high-rate
loading conditions.

Fundamentally, cross-slip provides an extra degree of freedom for the motion of a screw dislocation (Kubin, 2013), whereby a
screw dislocation can leave its habit plane and glide in a conjugate ‘‘cross-slip’’ plane. It plays a crucial role in phenomena like
work hardening, recovery, fatigue, creep, and pattern formation, Püschl (2002) and Madec et al. (2002). Microscopically, cross-slip
enables the annihilation of dislocations of opposite Burgers vector and also allows the passing of dislocations around obstacles such
as precipitates or inclusions present in the dislocation path. Cross-slip is typically associated with Stage III hardening in FCC metals;
however occasional cross-slip can also happen in other stages. Hence, its role as a softening or hardening mechanism depends on
the details of its occurrence. Therefore, it is important to have complete predictability on the critical stress of cross-slip under given
loading conditions.

As in most microscopic phenomena associated with plasticity, cross-slip is a thermally activated process. Small groups of atoms
hop from one metastable state to another with a rate that depends on the mechanism as well as the temperature and stress. Studies
3

in the literature have often focused on a system under constant stress and temperature to study the kinetics and kinematics of a
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cross-slip event (Esteban-Manzanares et al., 2020; Oren et al., 2017). At the atomic scale, this is achieved by using statistical N𝝈T
ensemble based on the Parrinello and Rahman stress control method and the Nose Hoover thermostat and its variants, whose aim is
to sample the time-invariant equilibrium probability distribution at constant stress and temperature (Parrinello and Rahman, 1981;
Miller et al., 2016). This is analogous to quasi-static loading where the system follows near-statistical equilibrium behavior. But in
experiments, approximately constant strain rate and evolving temperature are quite common. In addition, the study of cross-slip
dynamics under extreme loading conditions is equally important and is less well understood. In this work, we use the approach of
OMD to investigate this regime where the system is far-from-equilibrium.

The paper is organized as follows: in Section 2 we briefly explain the method of OMD. In Section 3 we discuss the computational
setup and report various mechanisms of cross-slip in the regime of high-rate deformation. We investigate the choice of the tensor
𝐀 (macroscopic motion) on dislocation evolution for smaller and flexible dislocation segments. Later, we assess the applicability of
transition state theory (TST) under highly non-equilibrium conditions. It is surprising to us that there is some level of agreement
between a modified version of TST and our simulations. We do not see persuasive evidence of atoms entering a well, equilibrating,
and then passing out of a well through a low barrier in the simulations. In Section 4 we show the flexibility of the OMD framework
to study sliding behavior. Finally, the conclusions are contained in Section 5.

2. Objective molecular dynamics

Equilibrium statistical mechanics is based on a time-independent invariant manifold defined by 𝐻 = 𝑐𝑜𝑛𝑠𝑡., where 𝐻 is the
Hamiltonian. On the other hand, Objective Molecular Dynamics (OMD) is a simulation approach based on an explicit but time-
dependent invariant manifold of MD equations defined by (6) below. The manifold has dimension (6𝑁 + 1). The existence of this
invariant manifold follows from key properties of frame-indifference and permutation invariance of the potential energy, together
with the fact that the kinetic energy is quadratic in the velocities (Dayal and James, 2012). These properties offer a generalized
and vast manifold that is exploited in OMD. In this section, we provide a brief overview of the Objective Molecular Dynamics
approach and identify its distinguishing features making it a suitable simulation approach to study dislocation dynamics and friction
in crystalline materials. For a detailed overview of the OMD method see Dumitrică and James (2007).

2.1. Potential energy

In the OMD framework, we index atom positions 𝐲𝑖,𝑘 by the double index (𝑖, 𝑘) where 𝑖 = 1,… , 𝑁, 𝑘 = 1,… ,𝑀 . In applications
presented in this paper using the translation group, 𝑁 = ∞; for finite groups 𝑁 is finite and in that case 𝑁∕𝑘 must be chosen as
an integer. Atoms with the same second index, e.g., (𝑖1, 𝑘) and (𝑖2, 𝑘), must necessarily be the same species. Frame indifference –
invariance of the potential energy under orthogonal transformation, translation and permutation – under the Born–Oppenheimer
approximation of quantum mechanics is given by

𝜑(… , 𝐲𝑖1 ,1,… 𝐲𝑖1 ,𝑀 ,… , 𝐲𝑖2 ,1,… 𝐲𝑖2 ,𝑀 ,…)

= 𝜑(… ,𝐐𝐲𝑖1 ,1 + 𝐜,…𝐐𝐲𝑖1 ,𝑀 + 𝐜,… ,𝐐𝐲𝑖2 ,1 + 𝐜,…𝐐𝐲𝑖2 ,𝑀 + 𝐜,…)

= 𝜑(… , 𝐲𝛱(𝑖1 ,1),… 𝐲𝛱(𝑖1 ,𝑀),… , 𝐲𝛱(𝑖2 ,1),… 𝐲𝛱(𝑖2 ,𝑀),…), (3)

here 𝐲𝑖,𝑘 represents the position of atom (𝑖, 𝑘), 𝐐 is a tensor in O(3), 𝐜 is a translation in R3 and 𝛱(⋅, 𝑘) is a permutation on its
irst index of 1,… , 𝑁 for each 𝑘. Put simply: the positions of atoms of the same species can be interchanged without affecting the
otential energy. These invariances can also be written for the forces acting on atoms by formally differentiating (3) with respect
o positions of atoms. The latter still holds in cases that the potential energy is infinite, which occurs in the present case.

.2. Objective structures

The invariance of the atomic forces is closely associated with the underlying long-range symmetries of various special structures
alled objective structures (James, 2006) and a family of flows termed universal flows (Dayal and James, 2012). The symmetry
f interest here is represented by a time-dependent isometry group (𝑡) = {𝑔(𝑡)1 ,… , 𝑔(𝑡)𝑁 }, 1 ≤ 𝑁 ≤ ∞, i.e., groups of orthogonal
ransformation and translations in which the translation is affine in time. The action of its elements on a point 𝐲 ∈ R3 is given by

𝑔(𝑡)𝑖 (𝐲) = 𝐐𝑖𝐲 + 𝐜(𝑡)𝑖 ; 𝑔(𝑡)𝑖 = (𝐐𝑖|𝐜
(𝑡)
𝑖 )

 = {𝑔(𝑡)1 , 𝑔(𝑡)2 ,… , 𝑔(𝑡)𝑁 }, 𝑔(𝑡)1 = 𝑔1 = 𝑖𝑑, (4)

here the 𝐜(𝑡)𝑖 are affine in time. The group product is the standard one for isometries: (𝐐1|𝐜1)(𝐐2|𝐜2) = (𝐐1𝐐2|𝐜1 + 𝐐1𝐜2). The
nclusion of time dependence makes this an exact NEMD method in the framework of OMD. Here, the equations of MD are solved
or 𝑀 simulated atoms 𝐲1,𝑗 , 𝑗 = 1,… ,𝑀 and the trajectory of all the other (typically infinitely many) non-simulated atoms are
btained by applying isometry groups to the set of simulated atoms using the rule given in (4):

𝐲𝑖,𝑗 = 𝑔(𝑡)𝑖 (𝐲1,𝑗 ), 𝑖 = 2, 3, 4… . (5)

In previous work (Dayal and James, 2010), it is proved that mapping the trajectory of infinitely many non-simulated atoms
(𝑖,𝑗) using Eq. (5) provides the necessary and sufficient conditions for non-simulated atoms to satisfy the equations of molecular
ynamics for their forces (provided that the simulated atoms also obey the MD equations). This is obtained by exploiting the special
4

tructure of the equations of molecular dynamics as noted above.
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2.3. Time-dependent translation group

While there is tremendous latitude for choosing groups and (affine) time dependencies, we will confine attention in this paper
o the pure translation group 𝐐𝑖 = 𝐈, 𝑖 = 1,… , 𝑁 . In this case a useful relabeling of the group is to replace the single index
𝑖 by a triple of integers 𝜈 = (𝜈1, 𝜈2, 𝜈3) with 𝑀 simulated atoms denoted ((0, 0, 0), 𝑘), 𝑘 = 1,… ,𝑀 . In this case the group is
(𝑡) = {(𝐈|𝜈1(𝐈 + 𝑡𝐀)𝐞1 + 𝜈2(𝐈 + 𝑡𝐀)𝐞2 + 𝜈3(𝐈 + 𝑡𝐀)𝐞3) ∶ 𝜈1,2,3 ∈ Z}, where 𝐞1, 𝐞2, 𝐞3 are given linearly independent vectors, and 𝐀 is
a linear transformation. Clearly, this is a group under the product rule given above, and it has the affine time-dependence. The
relation between the positions and velocities of simulated and non-simulated atoms is then

𝐲𝜈,𝑗 = 𝑔(𝑡)𝜈 (𝐲(0,0,0),𝑗 (𝑡), 𝑡)
= 𝐲(0,0,0),𝑗 (𝑡) + 𝜈1(𝐈 + 𝑡𝐀)𝐞1 + 𝜈2(𝐈 + 𝑡𝐀)𝐞2 + 𝜈3(𝐈 + 𝑡𝐀)𝐞3

𝐯𝜈,𝑗 = 𝐯(0,0,0),𝑗 (𝑡) + 𝜈1𝐀𝐞1 + 𝜈2𝐀𝐞2 + 𝜈3𝐀𝐞3, (6)

respectively. When 𝐀 = 𝟎, OMD reduces to conventional periodic molecular dynamics (PMD) describing the system under adiabatic
conditions, where the total energy of the system is conserved and the velocity of non-simulated 𝐯𝜈,𝑗 and simulated atoms 𝐯(0,0,0),𝑗
become equal. Thus, the method of Objective Molecular Dynamics generalizes the periodic molecular dynamics to non-equilibrium
situations in an exact manner where each atom in the system satisfies Newton’s equation of motion for its forces.

The proof that each of the infinitely many non-simulated atoms satisfies the MD equations for its forces uses the frame-
indifference and permutation invariance (i.e., switching positions of like species) of the atomic forces, and the fact that the kinetic
energy is quadratic in the velocities (Dayal and James, 2010).

2.4. Isochoric motions

To explain the method in a simpler context, Fig. 2 illustrates the method for general incompressible motion of Lennard Jones
argon with dislocations in a defective lattice where 𝐀 is given by 𝐀 = 𝜅𝐞𝟏 ⊗ 𝐞𝟐 and 𝐯(𝐱, 𝑡) = 𝐀(𝐈 + 𝑡𝐀)−1𝐱 with orthonormal vectors
𝐞𝟏, 𝐞𝟐, 𝐞𝟑. Here, simulated atoms (cyan and orange atoms) lie in a fundamental domain (parallelepiped defined by 𝐞1, 𝐞2 and 𝐞3) at
𝑡 = 0. With 𝐀 ≠ 0, the initially defined domain starts deforming under the macroscopic motion. Due only to MD simulation, the
simulated atoms leave the domain as time evolves under the influence of forces from other simulated and nonsimulated atoms. At
any instant, the positions of simulated atoms can be used to find corresponding non-simulated atoms using (6). The non-simulated
atoms fill all of the space but, for clarity, in Fig. 2, nonsimulated atoms are not shown. The simulated atoms are colored based on
their coordination (cyan is FCC and orange is HCP) with lower transparency of atoms not lying on the center slice of the domain.
Note that isochoric motion illustrated here is accomplished by a special choice of the components of the matrix 𝐀 out of many other
possibilities available. While we focus on isochoric macroscopic motions in this work, the method is not restricted to that case.
For example, the well-known pressure–shear plate impact (PSPI) experiment corresponds approximately to a choice of 𝐀 given by
𝐀 = −𝐾1𝐞1 ⊗ 𝐞1 +𝐾2𝐞1 ⊗ 𝐞2 (Kim and Clifton, 1980; Abou-Sayed et al., 1976; Ravindran et al., 2020).

3. Screw dislocations

3.1. Initialization

In this case, screw dislocations are introduced into the initial conditions for the simulated atoms of Ni, which are otherwise in
a relaxed FCC structure. The interatomic interaction is described by an embedded-atom method (EAM) potential developed by Rao
et al. (1999) using the Voter and Chen format (Voter and Chen, 1986). Table 1 lists the lattice parameter, cohesive energy, elastic
constants and stacking fault energy for the potential. The correct prediction of the stacking fault energy (SFE) which is defined as the
energy cost per unit area for changing the local stacking of the fcc {111} planes from ABCABC to ABC|BCA is especially important
for dislocation related mechanisms. This force field gives good agreement between experiment and theory for the SFE (Siegel, 2005;
Bernstein and Tadmor, 2004).

To construct the initial atomic configuration, we use the Atomsk package (Hirel, 2015). The atoms are assigned random initial
velocities extracted from a Maxwell–Boltzmann distribution at a given temperature 𝑇 . Two perfect screw dislocations with opposite
Burgers vectors ±𝐛 are introduced into the domain along the 𝐞2 axis to maintain a net Burgers vector of zero, so as to be consistent
with the approximate periodicity of the surrounding lattice. This is to ensure the continuity in the displacement field along the
edges of the computational domain so that time-dependent periodicity in OMD is maintained. The screw dislocations are located
on parallel (1̄11) planes as shown in Fig. 3. Note that the dislocations generated by Atomsk are not relaxed. They correspond to the
displacement fields predicted by anisotropic elasticity theory for a given set of material properties. To equilibrate them, we simulate
the system under 𝐀 = 𝟎 before applying any motion to the domain. This is equivalent to periodic MD at macroscopic equilibrium.

Fig. 3 shows the initial state of two screw dislocations. Cyan colored atoms shown there are in FCC coordination. Starting with
a rectangular atomic cell, defined by vectors 𝐞1, 𝐞2 and 𝐞3 at [11̄2], [1̄11] and [110], respectively, we first generate a dipole of infinite
straight parallel perfect screw dislocations, 𝐛 = 𝑎0

2 [110] (shown as the blue dislocation lines in Fig. 3(a)). The orientations of the
domain are chosen such that the axes correspond to the glide plane (1̄11) and glide direction [11̄2]. Equilibration under the NVE
ensemble then leads to splitting of the perfect dislocation into the cores of the two Shockley partials identified by Burgers vectors
5
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Fig. 2. Illustration of a three-dimensional isochoric motion (𝐀 = 𝐾1𝐞1 ⊗ 𝐞2). The fundamental domain (22.9 Å × 43.2 Å × 8.8 Å) deforms under the macroscopic
motion. The parallelepipeds represent the macroscopic motion, but atoms move in and out of these parallelepipeds according to the OMD method, as seen at
𝑡 = 𝑡1. The transparency of atoms not lying on the center plane has been reduced for better illustration. Different colored atoms depict different coordination
and line vectors show dislocations.

𝐛1, 𝐛2 and with an intervening stacking fault in accordance with the energetic argument provided by Frank’s rule, Fig. 3(b) and (c).
The screw dislocations can have different equilibrium core structures which can lead to splitting of screw dipoles on either glide
(1̄11) or cross-slip (111) planes creating 4 possible combinations. We choose the first case where both partials reside on glide plane
as our starting point. This equilibrated configuration is then further used to perform non-equilibrium OMD simulations. The OVITO
package is used for visualizations provided in this work (Stukowski, 2009).

In the simulations, dislocations fill all of space. The use of OMD results in an infinite array of dislocation dipoles which gives
rise to image forces. We systematically varied the sizes of the fundamental domains and ran preliminary simulations to examine
the effect of these forces: the simulation cell was increased in the in-plane directions 𝐞1 and 𝐞2 keeping the dislocation line length
constant. Table 2 lists domain sizes for the different cases considered. These have a high aspect ratio of the fundamental domain.
This feature was also found to mitigate the effects of image and dipole interaction forces based on atomistic investigation (Oren
et al., 2016). From prior work, Mordehai et al. (2003) the contribution of these forces was found to be insignificant if the externally
applied stress 𝜎ext is greater than 𝜎𝑐 = 𝜇𝑏𝐿

8𝜋2𝑟20
. For the smallest domain we have considered, 𝜎𝑐 = 7.9 MPa which is three orders of

magnitude smaller than the dominant peak external stress applied to the domain.
Dislocations are identified in atomistic simulations performed here using the Dislocation Extraction Algorithm (DXA) imple-

mented in the OVITO package (Stukowski and Albe, 2010). The DXA algorithm constructs Burgers circuits to find the existing
dislocations. The correct search space is identified using Common Neighbor analysis which locates atoms that form a perfect (but
elastically strained) crystal lattice. We find that the width of the stacking faults constantly fluctuates, governed by a balance between
elastic and thermal forces. This known phenomenon is termed dislocation breathing in Mordehai et al. (2005).

Our OMD simulations focused on simple shear of bulk crystalline materials is conducted by adapting the classical molecular
dynamics simulator LAMMPS. ‘‘Fix deform’’ with style ‘‘erate’’ is used to apply ‘‘constant engineering strain rate’’ to the material. It
is accommodated with keyword ‘‘remap’’ for positions and velocities. This is to enable use of the relationship (6) to find the trajectory
of a nonsimulated atom that enters the fundamental domain as its corresponding simulated atom exits. It is essential to redefine
the non-simulated atoms entering the domain as simulated atoms to be consistent with the OMD method. (This corresponds to the
redefinition defined in Pahlani et al. (2022a)). The box motion is updated at every time step and the velocity Verlet algorithm is used
to integrate the Newton’s equations of motion with a time step of 1 fs. We note that the Velocity Verlet algorithm perfectly matches
the structure of OMD at discrete level: the non-simulated atoms exactly satisfy the Velocity Verlet algorithm for their neighbors, if
the simulated atoms are subject to this algorithm.

3.2. Effect of external loading on cross slip mechanism

We use simple shearing motion along various directions to explore the effect of different components of stress on the detailed
dislocation reactions during dynamic evolution. We investigate different mechanisms of cross-slip by varying the stress state in the
6
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Table 1
Lattice parameter, elastic constants, cohesive energy and stacking fault energy given by the Ni
EAM ‘‘vnih’’ potential.

Property Value

𝑎0 (nm) 0.3526
𝑐11 (N∕m2) 2.44 × 1011

𝑐22 (N∕m2) 1.49 × 1011

𝑐44 (N∕m2) 1.19 × 1011

𝐸𝑐 (eV) −4.43
𝛾 (J∕m2) 0.119

Table 2
Different choices of the size of fundamental domain and number of simulated atoms 𝑁 .

Domain Dimension (𝑎1 Å × 𝑎2 Å × 𝑎3 Å) 𝑁

(1) (77.6 × 304.8 × 19.9) 43 200
(2) (142.27 × 353.61 × 19.9) 91 872
(3) (107.8 × 353.6 × 79.6) 278 400
(4) (142.27 × 353.6 × 82.13) 378 972
(5) (142.27 × 353.61 × 149.335) 689 040

Fig. 3. (a) We initialize a fundamental domain with the cyan-colored atoms in FCC coordination. To this domain, we introduce two perfect screw dislocations
(depicted by blue lines) on (1̄11) planes. (b) On equilibration, the screw dislocations dissociate into Shockley partial dislocations (depicted by green lines) with an
intervening stacking fault. The red atoms are now in HCP coordination. (c) We illustrate the atomic arrangement in the vicinity of Shockley partial dislocations
and the red vectors depict Burgers vectors of these dissociated partials.

material. The external loading is characterized using two definitions of stress: Escaig and Schmid stress. Stress that acts on the edge
component of a Shockley partial dislocation and controls its width is referred to as Escaig stress and the one which interacts with
screw component is referred to as the Schmid stress. These same definitions hold for both glide and cross-slip planes (Esteban-
Manzanares et al., 2020; Kuykendall et al., 2020). These stresses are given in terms of stress components in 𝐞1, 𝐞2, 𝐞3 coordinate
system as follows:

𝜎gs = 𝜎23, 𝜎css = sin 𝜃𝜎13 − cos 𝜃𝜎23,

𝜎ge = 𝜎12, 𝜎cse = cos 2𝜃(𝜎12) +
sin 2𝜃
2

(𝜎11 − 𝜎22),
(7)

where, 𝜃 is the angle between primary and cross-slip plane, subscripts ‘e’ and ‘s’ refer to Escaig and Schmid, and superscripts ‘g’ and
‘cs’ refer to glide and cross-slip plane, respectively.

The correct atomistic definition of stress under non-equilibrium conditions is an actively studied subject. Different definitions
used in the literature have been unified by Admal and Tadmor (2010). They find that the Hardy stress tensor has many favorable
features under non-equilibrium conditions, assuming that the system is in local thermodynamic equilibrium. Also the Hardy
stress is equivalent to the virial stress when a constant weighting function over the entire fundamental domain is used for the
averaging (Hardy, 1982; Hardy et al., 2002). This definition is used below to compute a pointwise uniform instantaneous stress which
is composed of kinetic and virial contributions. These pointwise values are then averaged over an ensemble of OMD trajectories
(random momentum at given initial temperature 𝑇 is assigned to each atom using a fresh random number seed) to compute
macroscopic stress.
7
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Fig. 4. Atomistic snapshots extracted at different times during the simulation. The figures illustrate the motion of dislocation lines during the Friedel–Escaig
mechanism (𝐀 = 𝐾1𝐞1 ⊗ 𝐞2 , 𝐾1 < 0) of cross-slip for flexible (long segment) dislocations. (a) Shockley partials on (1̄11) plane, (b) Recombination of partials, (c)
Protrusion of partials on the cross-slip plane, (d) Shockley partials on (111) plane. Note that FCC atoms are omitted. Green lines depict partials and blue lines
depict perfect screw dislocation. Orange atoms are in HCP coordination. Atoms in FCC coordination are omitted. Primary and cross-slip planes are (1̄11) and
(111) respectively.

We consider three elementary cases in this work. The first is where the pure Escaig stress on the glide and cross-slip plane is the
main non zero component and is positive. In the second case the Escaig stress is negative, and in the third case Schmid stress on the
cross-slip plane is the main non zero component. An appropriate assignment of 𝐀 yields these stresses. Note that minor hydrostatic
stresses (𝜎11 = 𝜎22 = 𝜎33) are present in the material after equilibration under NVE ensemble at finite temperatures due to thermal
expansion but their influence on the cross-slip phenomenon is negligible.

3.2.1. Friedel–Escaig (FE) mechanism
𝐀 is chosen to be 𝐾1𝐞1 ⊗ 𝐞2 resulting in the generation of stress 𝜎ge . This also induces Escaig stress on CS plane 𝜎cse as seen from

(7). The stacking fault width (SFW) is guided by the interaction between Shockley partials, stacking fault energy, internal stress
from the images, and the dominant stress 𝜎12. The condition 𝐾1 < 0, results in negative 𝜎ge which promotes decrease in the width
of the stacking fault ribbon on the glide plane which, in turn, favors cross-slip. This results in constriction of each partial which
leads to the formation of a perfect screw dislocation followed by a further dissociation of that perfect dislocation into partials on
the cross slip plane. The latter is oriented at an angle of 𝜃 = 70.53◦ with respect to the primary slip plane.

We investigated the effect of the dislocation line length on cross-slip. The shorter dislocation segment of 8|𝐛| (dimension of
fundamental domain) along 𝐞3 follows the FE mechanism uniformly. This means that the recombination of partials happens along the
entire dislocation line, uniformly leading to a perfect screw dislocation, which then cross-slips without bowing. On the other hand, for
the longer dislocation segments 32|𝐛| and 60|𝐛|, the partials recombine over a short segment of the full dislocation line and protrude
partially into the cross-slip plane, forming constriction joints (points which separate partials from recombined screw dislocation). The
two constrictions move apart along the dislocation line to complete the cross-slip process. Fig. 4 illustrates the mechanism and shows
the corresponding transition state for a longer dislocation. Here, we observe a dynamic variant of the Friedel–Escaig (Bonneville
and Escaig, 1979) mechanism, which incorporates dislocation breathing all along its length.

Next, we choose 𝐾1 > 0 for the same choice of 𝐀. In this case, the Escaig stress on the glide plane is positive which enlarges
the intrinsic stacking fault area between the two partial dislocations on the primary slip plane. Under continued loading, the SFW
increases until it starts interacting with a neighboring partial on the same (1̄11) glide plane. This leads to constriction of the leading
partial with the trailing partial of the image forming a perfect dislocation. The perfect dislocation then causes slip, immediately
followed by re-dissociation into partials on the adjacent (1̄11) glide plane, climbing upwards by one atomic layer. This double slip
phenomenon continues as the deformation progresses. The mechanical twin boundary gradually propagates towards the end of a
domain under the shear strain produced during the loading. This results in twin boundary motion mediated by the creation, motion
and annihilation of steps. Fig. 5 shows the temporal sequence of snapshots illustrating the mechanism for a small dislocation line
length. In this case the imposition of periodic boundary conditions, in addition to the particular loading orientation used for high
rate motion, also have an important effect on the pathway chosen and avoidance of stress buildup by cross-slip.
8
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Fig. 5. Atomistic snapshots illustrating formation of thickening mechanical twin and the motion of dislocation lines during the multiple cross-slip of shorter
dislocation segments when 𝐀 is chosen to be 𝐀 = 𝐾1𝐞1 ⊗ 𝐞2 , 𝐾1 > 0. (a) Shockley partials intervening stacking fault on (1̄11) plane, (b) Enlargement of stacking
fault area, (c) Formation of perfect dislocation, (d) Redissociation into partials on the adjacent glide plane, (e)–(g) Reiteration of events (b)–(d), (h) Formation
of thicker mechanical twin. Cyan and orange colored atoms are in FCC and HCP coordination respectively. Blue and green lines depict perfect screw and partial
dislocations respectively.

3.2.2. Fleischer mechanism
In this case we take the same initial conditions but 𝐀 = 𝐾2 𝐞1⊗𝐞3 with 𝐾2 > 0 or 𝐾2 < 0, which generates the stress 𝜎css . Contrary

to the previous cases, the stacking fault width does not vary much due to absence of an Escaig stress. After some time, one partial
dissociates into a stair-rod dislocation – a pure edge dislocation whose Burgers vector does not lie on the primary or cross-slip plane
– and a Shockley partial which bows out into cross-slip plane. This is followed by the reaction of remaining partial in the primary
plane with the stair-rod, forming a glissile trailing partial on the CS plane. As in cases above, only part of the dislocation bows out
into CS plane for the longer flexible dislocations, whereas the shorter dislocations dissociate uniformly along their entire line length.
The core structure of the activated dislocation undergoing cross slip contains a three-dimensional stacking fault structure as shown
in Fig. 6 (cf., Fleischer (1959)).

We also conducted simulations under mixed loading conditions. This is achieved by sampling phase space where both 𝐾1 and 𝐾2
are non zero (𝐀 = 𝐾1 𝐞1⊗𝐞2+𝐾2 𝐞1⊗𝐞3). It was observed that under mixed loading in the high-strain rate regime (𝐾1, 𝐾2 ≈ 107 s−1),
a combination of the FE and FL mechanisms may occur where part of the dislocation cross-slips by one mechanism and is completed
by the other. The mechanism is illustrated in Fig. 7 where cross-slip initiates by constriction of partials into a finite length screw
and is later assisted by formation of stair rod dislocation at the intersection of the primary and cross-slip planes. In some cases of
mixed loading, initiation happened by the FL mechanism and in others, a mixture of perfect and stair rod dislocations appears at
an initial stage.

In summary, we report four observed dynamical pathways in these highly non-equilibrium situations. In the range of conditions
studied, cross-slip occurs via the acute variant (i.e., the angle between the glide direction in the cross-slip and the primary plane is
acute) which is known to have lower activation energy. The FE mechanism operates when 𝜎ge is the only non-zero dominant stress
component and its direction is such that it reduces the separation between two partials on the glide plane. Hence the sign of 𝜎ge
is relevant. On the other hand, the Fleischer mechanism operates in the regime where 𝜎css is non-zero and is independent of the
direction of stress (i.e., the sign of 𝐾2). This is consistent with earlier work where the dependence of the energy barrier for cross-slip
on 𝜎css is predicted to be quadratic (Kuykendall et al., 2020). Moreover, the mechanism we observed for a given shear loading remains
independent of the strain rate, 𝐾1, 𝐾2 varying within four orders of magnitude (from 5×104 s−1 to 108 s−1). (Simulations with lower
strain rates are computationally demanding especially with the bigger fundamental domains of simulated atoms.)

We also explored the effect of dislocation line length on cross-slip. The preferred pathway is seen to remain invariant with respect
to the length of the dislocation ranging from 8|𝐛| to 60|𝐛|. This finding is invariant with respect to different domain sizes considered
9
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Fig. 6. Evolution of atomistic snapshot illustrating motion of dislocation lines during the Fleischer mechanism (𝐀 = 𝐾2 𝐞1 ⊗ 𝐞3 with 𝐾2 > 0) of cross-slip for
flexible dislocations. (a) Shockley partials on (1̄11) plane, (b) Dissociation of partial into stair-rod dislocation and leading partial which bows into cross-slip
plane, (c) Protrusion along complete dislocation line length, (d) Shockley partials on (111) plane. Pink and green lines depict stair rod and partial dislocations
respectively.

Fig. 7. Atomistic snapshots illustrating motion of dislocation lines during the mixed mechanism of cross-slip for flexible dislocations. The choice of 𝐀 is given
by (𝐀 = 𝐾1 𝐞1 ⊗ 𝐞2 +𝐾2 𝐞1 ⊗ 𝐞3). (a) Shockley partials on (1̄11) plane, (b) Recombination of a small segment of partials into the perfect screw, (c) Cross-slip of
a small segment of partials, (d)–(e) Formation of stair-rod dislocation, (f) The transition state has mixed behavior where both stair-rod and perfect dislocation
segments are present, (g)–(i) Further progression of cross-slip via mixed mechanism. .

shorter dislocation segments under constant stress at low temperatures of ∼10K (Xu et al., 2017). Furthermore, Xu et al. (2017)
use an NPT statistical ensemble with the Parrinello-Rahman barostat which samples the equilibrium time-invariant probability
distribution at constant stress and temperature in contrast to OMD. A similar conclusion was made using NEB calculations in Al
at zero temperature (Jin et al., 2011). However, we find that the dislocation length has a strong effect on the critical stress for
cross-slip for a particular mechanism. This will be further investigated in the next section.
10
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Fig. 8. Stress–strain response under different strain rates for the system undergoing cross-slipping by Fleischer mechanism (𝐀 = 𝐾 𝐞1 ⊗ 𝐞3 with 𝐾 > 0.

3.3. Effect of strain rate and temperature on the critical stress for cross-slip

In this subsection we focus on the Fleischer mechanism and investigate the effect of strain rate and temperature in the large
strain-rate regime. Fig. 8 shows the typical stress–strain response of the material at different strain rates that vary from 5 × 105 to
1×108 s−1. The stress–strain curve abruptly decreases after linearly increasing to a local maximum at the first transition from elastic
to plastic deformation. When the dislocation cross-slips, unloading waves are released immediately, modifying the local state. This
in turn results in the fall of the global stress. The shear modulus is obtained by linear fitting of the stress–strain curve when the
strain is <0.03 in the elastic region. It is given by 𝐺 = 75 MPa which is in agreement with the effective isotropic shear modulus
predicted by theory (Kang et al., 2014; Scattergood and Bacon, 1975, 1982). Inspection of the stress–strain curve reveals that strain
rates in this range during shear loading have little effect on the elastic phase of the stress–strain relationship and a modest effect
on the plastic phase. An increase in the strain-rate increases the local peak stress. This peak shear stress coincides with the stress
at which the material begins to undergo cross-slip. These simulations serve as clear evidence of the dependence of plastic yield on
the rate of deformation.

An interesting question is whether the transition state theory (TST) is valid under these conditions of high rate deformation.
We try to answer this here for dislocation cross-slip by making a direct comparison of predictions of OMD with TST. A few studies
in the literature have used the TST approach in the context of dislocation-defect interaction (Fan et al., 2013), mobility of screw
dislocation (Fan et al., 2012) and dislocation nucleation (Zhu et al., 2008). Originally, TST was developed for chemical reactions or
diffusion of atoms (Eyring, 1935; Marcelin, 1915). Vineyard (1957) later generalized this theory for multibody systems. A general
multiscale method based on TST was formulated by Voter et al. (2002). TST determines the rate at which system at equilibrium jumps
between two metastable basins by crossing the saddle region. Generally, one could question whether our system of dislocations stays
in a basin for a sufficiently long time so as to reach a macroscopic equilibrium described by the formulas of equilibrium statistical
mechanics, but we press ahead and evaluate it anyway. This transition rate at temperature 𝑇 and effective stress 𝜎 is then expressed
as

𝜈 = �̃� exp
(

−𝐺𝑐 (𝜎, 𝑇 )
𝑘𝐵𝑇

)

, (8)

where �̃� is a frequency prefactor, 𝐺𝑐 is the activation Gibbs free energy for cross-slip and 𝑘𝐵 is Boltzmann constant (Ryu et al., 2011).
The activation enthalpy 𝐻𝑐 and activation entropy 𝑆𝑐 are assumed to be insensitive to temperature under the range considered and
𝐺𝑐 is defined by

𝐺𝑐 (𝜎, 𝑇 ) = 𝐻𝑐 (𝜎) − 𝑇𝑆𝑐 (𝜎)

The cross-slip rate can be rewritten as

𝜈 = �̃� exp
(

𝑆𝑐 (𝜎)
𝑘𝐵

)

exp
(

−𝐻𝑐 (𝜎)
𝑘𝐵𝑇

)

. (9)

Hence, the contribution of activation entropy is contained in the overall multiplicative factor exp(𝑆𝑐 (𝜎)∕𝑘𝐵). Harmonic transition
state theory (HTST) simplifies the rate equation by assuming vibrations to be simple harmonic near the basin and saddle point. This
leads to

𝜈HTST = 𝜈1𝛱
𝑁
𝑖=2

𝜈𝑖
′ exp

(

−𝐻𝑐 (𝜎)
)

(10)
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where 𝜈1 is the fundamental frequency, 𝜈𝑖 and 𝜈′𝑖 are eigenfrequencies of the 𝑖th mode of the original and transition state respectively.
Under the framework of HTST, the entropic factor exp(𝑆𝑐 (𝜎)∕𝑘𝐵) is given by 𝛱𝑁

𝑖=2
𝜈𝑖
𝜈′𝑖

if �̃� is considered to be 𝜈1. The activation entropy
s typically approximated using an empirical thermodynamic compensation law, or the Meyer–Neldel (M–N) rule which accounts
or anharmonic effects such as temperature dependence of shear modulus, thermal expansion, and surface energies (Ryu et al.,
011; Meyer and Neldel, 1937). It is based on the empirical observation that the activation entropy is proportional to the activation
nthalpy and is given by

𝑆𝑐 (𝜎) =
𝐻𝑐 (𝜎)
𝑇𝑚

(11)

where 𝑇𝑚 is the melting temperature. We use the M–N rule to reduce the cross-slip rate to

𝜈 = �̃� exp
(−𝐻𝑐 (𝜎)(1 −

𝑇
𝑇𝑚

)

𝑘𝐵𝑇

)

, (12)

where 𝐺𝑐 is taken to be 𝐺𝑐 (𝜎, 𝑇 ) = (1 − 𝑇 ∕𝑇𝑚)𝐻𝑐 in (8) under a first approximation of the effect of temperature on the activation
free energy. Esteban-Manzanares et al. (2020) has shown the applicability of the M–N rule for aluminium within NPT dynamics of
cross-slip via the Friedel–Escaig mechanism in a temperature range of 400–600 K.

The average critical stress for cross-slip is derived using the survival probability in an initial elastic bulk solid (Zhu et al., 2008),
and is given by

d𝑓 (𝑡)
d𝑡

= −𝜈𝑓 (𝑡),

where 𝜈 is given by (12). Our loading can be considered a constant engineering shear strain rate 𝐾 applied to the solid. It can be
seen from Fig. 7 that before the onset of cross-slip, the relationship between stress and strain remains linear and the shear modulus is
insensitive to strain rate and temperature. Thus in the linear elastic deformation regime before cross-slip, the state of stress becomes
time-dependent and is given by 𝜎 = 𝐺𝐾𝑡, where 𝐾 is the shear rate. Following Fan et al. (2012), this can be used to make a change
of variables which yields

d𝑓 (𝜎)
d𝜎

= − 𝜈
𝐺𝐾

𝑓 (𝜎), 𝑓 (𝜎) =
exp

(

− ∫ 𝜎
0 (𝜈(𝜎′)∕𝐺𝐾)d𝜎′

)

𝐶
, (13)

where 𝑝(𝜎) = − 𝑑𝑓 (𝜎)
d𝜎 = 1

𝐶
𝜈(𝜎)
𝐺𝐾 exp

(

− ∫ 𝜎
0 (𝜈(𝜎′)∕𝐺𝐾)d𝜎′

)

is the first escape probability distribution and 𝐶 is normalization factor given
by

∫

𝜎𝑐

0
𝑝(𝜎)𝑑𝜎 = 1 ⇒ 𝐶 = ∫

𝜎𝑐

0

𝜈(𝜎)
𝐺𝐾

exp−∫

𝜎

0
(𝜈(𝜎′)∕𝐺𝐾)d𝜎′𝑑𝜎. (14)

Here, cross-slip is being treated as a probabilistic event. Thus, the critical stress obtained follows a distribution associated to repeated
computational tests. The expected critical stress is achieved by taking first moment of the escape probability distribution:

𝜎(avg) = ∫

𝜎𝑐

0
𝜎𝑝(𝜎)𝑑𝜎 =

∫ 𝜎𝑐
0 𝜎𝜈(𝜎)exp

(

− ∫ 𝜎
0 (𝜈(𝜎′)∕𝐺𝐾)𝑑𝜎′𝑑𝜎

)

∫ 𝜎𝑐
0 𝜈(𝜎) exp

(

− ∫ 𝜎
0 (𝜈(𝜎′)∕𝐺𝐾)𝑑𝜎′𝑑𝜎

) (15)

Eq. (15) predicts the TST guided temperature and shear rate dependence of the critical slip stress at a given activation enthalpy
𝐻𝑐 . Note that since the material undergoes a linear elastic deformation before cross-slip, the constant stress and constant strain
ensembles are equivalent here; either choice of independent variable could be used to find 𝜎(avg).

Several studies in the literature have estimated the contribution of the stress to the energy barrier associated with different
mechanisms of cross-slip (Esteban-Manzanares et al., 2020; Kuykendall et al., 2020). We use the energy barrier proposed by
Kuykendall et al. (2020), based on a modified string method for homogeneous cross-slip by Fleischer mechanism as a function
of Escaig and Schmid stress acting on glide and cross-slip plane. This is given by

𝐻𝑐 (�̃�) = 𝐴[1 − ( �̃�
𝜎𝑐

)𝑝]𝑞 , �̃� = 𝐶g
e 𝜎

g
e + 𝐶c

e𝜎
cs
e + (𝐷c

𝑠𝜎
cs
s )2, (16)

where an external stress �̃� lowers the energy barrier corresponding to cross-slip. In this comparison, we focus on the effect of Schmid
stress on cross-slip plane 𝜎css (corresponding to 𝐀 = 𝐾𝐞1 ⊗ 𝐞3) on the average critical flow stress 𝜎∗13. Thus, we reparameterize the
activation barrier as

𝜎ge = 𝜎cse = 0, 𝜎css =
2
√

2
3

𝜎13 ⇒ 𝐻𝑐 (𝜎13) = 𝐴[1 − (
𝜎13
𝜎′𝑐

)𝑝
′
]𝑞

′
, (17)

here 𝐴 = 2.2352 eV, 𝜎′𝑐 = 3.3478 GPa, 𝑝′ = 1.4576 and 𝑞′ = 1.4428. This is substituted into (15) to obtain the TST-based average
heoretical critical stress 𝜎∗13.

In Fig. 9(a) we compare the variation of critical stress vs. strain rate for shorter dislocation segments at a constant temperature
f 320 K and, in Fig. 9(b), vs. temperature at a constant strain rate of 107s−1. Fig. 10 illustrates a similar variation of flow stress
12
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for longer dislocations. Different choices of domain reproduce effectively the similar critical stress within statistical uncertainty.
This shows the negligible impact of dislocation replicas on the behavior of the system. The critical stress does not show a large
variation in the range investigated. This is consistent with the nature of the energy barrier which is found to be less sensitive to 𝜎css
as compared to other stress components (Kuykendall et al., 2020).

It is novel that the predictions of OMD are in reasonable agreement with those of TST for the constant value of �̃� taken to be
6.7 × 1012 and 1 × 109 s−1 for shorter and longer segments respectively under high-rate deformation. These estimates are less than
he Debye frequency, as expected. As dislocations become longer, the critical stress for cross-slip increases at all temperatures and
train rates. We conclude that the frequency prefactor is approximately inversely proportional to the length of the dislocation. This is
onsistent with the analysis by Friedel (2013) and Sobie et al. (2017) who predicted using a line tension model that the fundamental
requency of dislocations exhibits inverse dependence on the length. Thus, relatively short dislocation segments are activated for
ross-slip more quickly than longer segments. Moreover, for a constant strain rate and temperature the temperature and strain-rate
ensitivity of the critical stress decreases with an increase in the length of the dislocation.

We see that for a given temperature, deviations from the thermal activation stress begin appearing at strain rates which exceed a
ertain critical strain rate 𝐾∗. Evidently, this happens when the strain rate is so high that cross-slip is no longer thermally activated
n that regime and it is purely stress driven. Therefore, the stress is being ramped up in the system until the athermal limit is
eached. 𝐾∗ is seen to be higher for shorter segments as compared to longer ones and is also a function of temperature of the
ystem. For a given system, decreasing the temperature lowers this critical strain rate, allowing sufficient time for the dislocations to
vercome the barrier via thermal assistance, and this time is inversely proportional to the temperature. However, the same system
t higher temperatures for the same strain rate can be thermally activated. Similarly, we see that for a given shear rate, as the
emperature decreases, there is an overshoot of the critical stress which correlates well with the suppression of thermal activation.
his discrepancy is present in systems with different dislocation sizes, but it is more noticeable and it kicks in earlier, at a higher
emperature, for the longer ones as compared to shorter segments. On the other hand, for all temperatures higher than 𝑇 ∗, the
greement is surprisingly good. Thus, a system can be divided into two regimes: (1) thermally activated and (2) athermal/stress
riven, based on critical strain rate 𝐾∗ at a given temperature 𝑇 . Similarly for a sufficiently small shear rate 𝐾, a similar transition
appens at a critical temperature 𝑇 ∗. 𝑇 ∗ shifts towards a higher value as 𝐾 increases. However, we want to point out that the
eviation is not very significant for this system, and hence both regimes can still be approximated as thermally activated regimes
or the development of constitutive rules for higher-scale models.

These results can be useful for the calibration of mesoscopic dislocation dynamics (DD) methods at high strain rates. DD methods
mploy physics-based constitutive rules for the motion of dislocations. An activated theory-based probability model has been used
o incorporate cross-slip in DD simulations, but different studies have adopted different choices of the effective activation energy
arrier (Kubin et al., 1992; Hussein et al., 2015; Longsworth and Fivel, 2021). The study conducted here provides confidence
n the usage of an Escaig/Schmid stress dependent energy barrier for the modeling of cross-slip of screw dislocation segments
nder high rate deformation. It is an important finding that the frequency prefactors �̃� obtained in this study for both longer and
horter segments are smaller than the ones typically reported for the similar system under equilibrium at some constant stress 𝜎
nd temperature 𝑇 (Esteban-Manzanares et al., 2020; Kuykendall, 2016). This suggests that higher strain rates lead to suppression
f cross-slip. This is in agreement with the understanding that under large strain rates, thermal fluctuations become less efficient,
.e., the critical stress of cross-slip corresponds to an effective temperature which is smaller than actual one (Kubin, 2013). This
an significantly affect the macroscopic response of system and can result in widely different behavior as compared to system
nder quasi-static loading. Thus, this work promotes the inclusion of appropriate strain-rate dependence of frequency prefactors
or mesoscale modeling. The investigation also allows us to understand the transition from homogeneous cross-slip, seen for short
islocation segments, to inhomogeneous slip for larger dislocation lengths.

The frequency prefactor we obtain for the shorter segments might be an under estimate. This is owing to the fact that the
ctivation barrier we use here for both our studies of shorter and flexible dislocations was originally derived for longer segments.
n some prior studies, e.g. Rasmussen et al. (2000), the barrier is found to rise proportionally to the dislocation length for short
islocation segments and it saturates at constant value for sufficient long dislocations.

. Unlubricated sliding

Friction is one of the most common phenomenon encountered in everyday life, and yet is one of the least understood physical
henomena. In this section, we briefly show that how OMD can be used to conduct sliding simulations which can help to investigate
on-equilibrium processes occurring at the atomistic scale. The purpose of this section is to show an unexpected capability of our
ethod, and also to see the formation of dislocations in a frictional sliding simulation. A comprehensive study of the physics of

rictional sliding based on OMD will be presented elsewhere.
The technical details on the design of our OMD computational method for frictional sliding is, apart from initial conditions,

lmost the same as used above (For detailed information on the implementation, see Pahlani et al. (2022a)). In these simulations,
t is more informative to adopt Lagrangian approach and follow the motion of simulated atoms which are defined at 𝑡 = 0. To
chieve that, we do not perform any remapping and redefinition of simulated atoms, and therefore they are free to leave or enter
he fundamental domain. This requires a slight modification in our approach for the neighbor search implemented in Pahlani et al.
2022a). In the cell list method (Allen and Tildesley, 2017) we divide the fundamental domain into cells; all atoms are assigned to
he cells according to their positions. In the present case we can have simulated atoms outside the fundamental domain (Fig. 11(b));
13

ach of those exterior simulated atoms is assigned a cell based on the position of its corresponding non simulated atom that lies
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Fig. 9. Critical stress of cross-slip as a function of (a) logarithm of strain rate and (b) temperature for short dislocation segments undergoing cross-slip by the
Fleischer mechanism.

Fig. 10. Critical stress of cross-slip as a function of the (a) logarithm of strain rate and (b) temperature, for long and flexible dislocation segments undergoing
cross-slip by the Fleischer mechanism.

inside the fundamental domain. That cell identifier is then used to find the atoms in the neighboring 27 cells which can interact
with that atom. After this, we follow the same procedure which was used earlier to find the nearest image. The distance between
simulated atoms 1, 𝑘 and 1, 𝑚 at time 𝑡 can be written as:

𝐫𝑘,𝑚 = 𝐲1,𝑘 − 𝐲1,𝑚 = {𝜆1(𝐈 + 𝑡𝐀)𝐞1 + 𝜆2(𝐈 + 𝑡𝐀)𝐞2 + 𝜆3(𝐈 + 𝑡𝐀)𝐞3} (18)

𝐫𝑘,𝑚 is the shortest distance if and only if |𝜆𝑖| ≤ 0.5. If |𝜆𝑖| > 0.5 then either simulated atom 1, 𝑘 or simulated atom 1, 𝑚 lies
outside the domain. Atom 1, 𝑘 then interacts with an image of the simulated atom 1, 𝑚, and the distance between them is given
by 𝐫𝑘,𝑚−⌊(𝜆𝑖)⌋(𝐈+ 𝑡𝐀)𝐞𝑖 where 𝐫𝑘,𝑚 is known from the calculation above and ⌊𝑥⌋ is the closest integer greater than or equal to 𝑥. This
is repeated for each simulated atom whether it lies outside or inside the domain. Based on these computed interatomic distances, we
calculate the force and then evolve the trajectory. We emphasize that both the implementation with remapping/redefinition used
above, or the implementation used here are exact OMD methods.

The setup for the MD simulations of sliding is illustrated in Fig. 11. The system consist of two slabs. Both upper and lower slab
are made of Argon atoms which interact via Lennard-Jones (LJ) potential. The two body interaction between atoms i and j is given
by

𝜙(𝑟𝑖𝑗 ) = 4𝜖LJ[(
𝜎LJ )12 − (

𝜎LJ )6] (19)
14

𝑟𝑖𝑗 𝑟𝑖𝑗



Journal of the Mechanics and Physics of Solids 179 (2023) 105361G. Pahlani et al.

w

N
a
r
g
d
s

r
O
t
T
t

m

where 𝜎LJ = 3.4 × 10−10 m and 𝜖LJ = 1.65 × 10−21 J. Basic physical properties are expressed in LJ units: 𝜎LJ, 𝜖LJ, 𝜖LJ∕𝑘𝑏, 𝜖LJ∕𝜎3LJ,
[𝑚𝜎2LJ∕𝜖LJ]

1∕2 for length, energy, temperature, pressure and time respectively. An FCC crystal is (presumably) the ground state of
this potential with a lattice constant of 𝑎 = 1.556 𝜎LJ. We use a computational domain containing 69 790 simulated atoms. The two
slabs are specified by adding random noise to the positions of atoms at the mid plane along 𝐞2. We want to emphasize that the only
essential difference between these simulations and the ones above involving dislocations (or those involving hypersonic flows of
fluids Pahlani et al., 2021, 2022b) is a change of initial conditions.

Besides the random noise at the interface, the system is otherwise initialized using random velocities sampled from Maxwell–
Boltzmann distribution at the initial temperature 𝑇0 and further equilibrated to a steady state by running it under an NVE ensemble
achieved by using OMD with 𝐀 = 0. The equilibrated system is illustrated in Fig. 11(a) where red and blue colored atoms simply
highlight the slabs above and below the initially perturbed layer and aid in showing where the atoms go (The coloring is Lagrangian.)
Next, we begin the OMD simulation under simple shearing by choosing 𝐀 = 𝐾1𝐞1⊗𝐞2 in the basis 𝐞1 = [100], 𝐞2 = [010] and 𝐞3 = [001],

here 𝐞1, 𝐞2 defines the sliding plane.
The perturbed layer quickly evolves to an well-defined interface along which the two blocks slide as a frictional system, Fig. 11(b).

ote that the portion of these slabs which is composed of non-simulated atoms is omitted from the visualization; only simulated
toms are shown. (The full set of atoms satisfying the equations of molecular dynamics fills all of space.) Frictional sliding can give
ise to the generation of elastic shear waves at the interface in the fundamental domain and their images under the translation
roup. To minimize shear wave reverberations, fundamental domain and the value of the 𝐾1 needs to be big enough such that the
uration of the simulation is well within the propagation time of shear wave based on the macroscopic shear wave velocity and the
ize of the fundamental domain.

Fig. 11(c) gives insight into the deformation process; atoms in FCC coordination are omitted in Fig. 11(c). At first, perfect stair
od and mixed dislocations nucleate under the mid plane. The dislocations are identified using the same DXA algorithm within
vito that was used earlier. As sliding evolves, the Shockley partials cross slips, majorly dominant by the Fleischer mechanism (in

he system investigated) followed by the propagation of stacking faults in the lower slab on the preferred close packed slip plane.
he temperature of the system increases with time since there are no thermostats applied and the external work is being done on
he system. The instantaneous temperature at time 𝑡 is computed by:

𝑇 (𝑡) = 𝑚
3𝑘𝑏𝑁

[ 𝑁
∑

𝑖
(𝑣′ 2

1,𝑖 + 𝑣′ 2
2,𝑖 + 𝑣′ 2

3,𝑖 )

]

(20)

where, 𝑣′𝑗,𝑖 denotes the thermal velocity (difference between particle velocity and mean velocity) of particle 𝑖 in direction 𝐞𝑗 , and
𝑘𝑏 is the Boltzmann constant.

In Fig. 12(b) we plot the temperature profile across the material for the average relative speed between slabs of about 120 m∕s.
The profile is computed by partitioning the fundamental domain into bins in the 𝐞2 direction. The temperature in each bin is then
computed by local averaging of the variance of kinetic energy of the atoms present in the bin. The temperature at the interface
is highest and decreases monotonically. The temperature at the interface reaches approximately 48 K which gives rise to onset of

elting and mechanical mixing at the interface.
Fig. 12(a) shows the evolution of sliding stress 𝜏12, computed using the Virial stress given by

𝝈(𝑡) = − 1
𝑉

( 𝑁
∑

𝑖=1
𝑚𝑖(𝐯𝑖 − �̄�)⊗ (𝐯𝑖 − �̄�) +

𝑁
∑

𝑗≠𝑖

𝑁
∑

𝑖=1
𝐫𝑖𝑗 ⊗ 𝐅𝑖𝑗

)

, (21)

where 𝑁 is the number of simulated atoms, �̄� is the mean velocity, 𝐫𝑖𝑗 is the inter-atomic distance, 𝐅𝑖𝑗 is the interatomic force
between atom 𝑖 and 𝑗 and 𝝉 = 𝝈 − 1

3 tr(𝝈)𝐈. This stress increases elastically until the initiation of sliding, at which time the stress
drops rapidly. The tangential stress can have a strong dependence on the velocity as described by Rigney and Hammerberg (1998).
We also see that the sliding stress follows an oscillating behavior reminiscent of widely observed microscopic stick–slip behavior
as the two slabs move past each other. During the ‘stick’ phase, both the slabs are stuck to each other. This is followed by sudden
slip. Similar behavior is observed in the slab’s velocity field as well. When the relative velocity between the blocks is small then
materials can cold weld together. Conversely, if it is very high then sliding can occur at the junction between simulated and non-
simulated atoms away from the interface, indicating a more general disintegration at these extremely high rates. These results
indicate that, with an appropriate choice of 𝐀 and initial conditions within the OMD framework, we are able to conduct high speed
sliding studies at the molecular scale. Atomistic studies on sliding are usually performed by building reservoirs to apply external
tangential force (Epiphaniou, 2010). On the other hand, in OMD since external macroscopic motion is applied to the domain through
the imposition of linear transformation tensor 𝐀, it avoids the need of building external reservoirs which simplifies the simulation
to a great extent and saves computational time.

5. Conclusion

OMD provides a computational framework for the exploration of the interplay between motions at the continuum scale and
atomic scale. The macroscopic affine motions simulated by OMD are exact solutions of macroscopic continuum mechanics, and, at
atomic scale, every atom out to infinity, simulated or nonsimulated, satisfies the equations of molecular dynamics to high accuracy.
Thus, OMD is an exact approach for doing NEMD arising from the invariance of underlying potential energy surfaces which originates
from Born–Oppenheimer quantum mechanics. This motivates its usage to make connections with larger length and time scale theories
which can improve mesoscopic and macroscopic predictions of realistic systems.
15
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Fig. 11. Atomic configuration associated with the system at an (a) initial state and (b) during sliding. Red and blue colored atoms constitute two LJ slabs of
simulated atoms. (c) Nucleation and motion of various dislocations in the lower slab during sliding.

Fig. 12. (a) Evolution of sliding stress (b) Temperature profile across 𝐞2 direction. Dimension of the domain: 15.8 nm × 31.7 nm × 5.29 nm.

In this work, we focused on the modeling of cross-slip in a bulk crystal under high-rate loading. We are able to give a detailed
description of the onset of cross-slip by Friedel–Escaig or Fleischer mechanisms under different macroscopic motions, and also the
appearance of twinning and step motion. It is important to note that under mixed loading conditions, a combination of FE and FL
mechanisms may also occur which is not commonly assumed in DD-based studies.

The OMD method provides a framework to develop a multiscale model to investigate the interplay between cross-slip stress,
temperature, and strain rates. We propose an activated theory-based rule for the cross-slip stress as a function of strain rate and
16
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temperature under high strain rates for the FL mechanism. Surprisingly, it was found that the response of the material under far-from-
equilibrium conditions is consistent with an equilibrium theory of activation within a constant stress ensemble, under appropriate
evaluations. The critical stress for cross-slip depends on the thermodynamic properties of activation, such as activation free energy,
enthalpy and entropy. The use of a stress-dependent activation energy in conjunction with the empirical Meyer–Neldel rule for the
entropic contribution captures the correct probabilistic behavior of the system across a wide range of shear rate and temperature.
We also verified the general dependence of the activation energy on effective stress composed of Escaig and Schmid components
purely based on the atomistic investigation. These findings can easily be incorporated into dislocation dynamics simulations to
improve probabilistic models of bulk cross-slip.

Finally, we presented initial results of frictional sliding at high rates. Wave interactions with images could be avoided in these
imulations without compromising the method. Dislocations formed initially at the interface and, under various conditions, we
bserved stick–slip, a temperature rise at the interface and, at extremely high rates, a type of fragmentation.

Taken together, a surprising aspect of this OMD implementation is that essentially the same numerical method, with the same
tomic forces and same 𝐀, can be used to study diverse behavior such as slip, cross-slip by various mechanisms, twinning and step

motion and frictional sliding, simply by changing the initial conditions. With earlier work, this universality extends to behavior in
liquids and gases, and, with appropriate groups, to nanostructures.
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